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Abstract: Recent work has suggested a surprising new upper bound on the lifetime of

de Sitter vacua in string theory. The bound is parametrically longer than the Hubble time

but parametrically shorter than the recurrence time. We investigate whether the bound is

satisfied in a particular class of de Sitter solutions, the KKLT vacua. Despite the freedom

to make the supersymmetry breaking scale exponentially small, which naively would lead

to extremely stable vacua, we find that the lifetime is always less than about exp(1022)

Hubble times, in agreement with the proposed bound. This result, however, is contingent

on several estimates and assumptions; in particular, we rely on a conjectural upper bound

on the Euler number of the Calabi-Yau fourfolds used in KKLT compactifications.
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1. Introduction

String theory appears to contain a large number of de Sitter vacua. Our current under-

standing is that de Sitter vacua cannot be completely stable [1, 2], necessarily decaying

before the Poincare recurrence time,

trec ∼ H−1eSdS (1.1)

where SdS is the entropy of the cosmological horizon,

SdS ∼ M2
P

H2
(1.2)

and H is the Hubble constant.

Recently, theoretical considerations have suggested a more stringent bound on the

maximum lifetime of de Sitter vacua in string theory [3]. As we will explain in section 2,

the bound comes from demanding that one causal patch of de Sitter space does not contain

an enormous number of observers formed from rare processes which violate the second law
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of thermodynamics. The bound is much longer than the Hubble time but much shorter

than the recurrence time. The bound is

tdecay < H−1 e10
40

. (1.3)

As we will explain later, significant theoretical uncertainty remains in this bound. We

estimate that at 1σ the bound is

tdecay < H−1 e10
40±20

. (1.4)

With an uncertainty of 20 in the second exponent, this may be the least precise prediction

in the history of science.

Nevertheless, the bound is nontrivial and unexpected from the point of view of low

energy effective field theory. Consider gravity coupled to a single scalar field whose poten-

tial contains one minimum with positive vacuum energy and one minimum with negative

vacuum energy. For a high, wide barrier, the decay time is of order the recurrence time.

For a low, narrow barrier the decay time is much faster than the recurrence time. Both

situations are robust against corrections, and from the low energy point of view there seems

to be no reason to consider one class of potentials and not the other [4, 5].

We attempt to construct vacua with such long lifetimes in string theory, focusing on

the construction of Kachru, Kallosh, Linde, and Trivedi (KKLT) [1]. Since the KKLT

scenario allows for a very low supersymmetry breaking scale, and supersymmetry guaran-

tees stability, at first it may seem easy to construct extremely stable vacua. For example,

Ceresole, Dall’Agata, Giryavets, Kallosh, and Linde [6] estimated in a particular context

that the lifetime of nearly supersymmetric vacua is of order

tdecay ∼ exp

(

M2
P

m2
3/2

)

. (1.5)

(Here and below, we do not compute the one-loop determinant, so the dimensional prefactor

factor in all of our decay times will be unkown.) While we agree with their analysis in

the context it was done and will make use of it later, we find that the above formula

overestimates the lifetime of KKLT vacua with very low supersymmetry breaking scale.

Instead, we find that as the supersymmetry breaking scale is lowered the lifetime

approaches a finite limit. We find

tdecay < exp

(

3 · 10−3 gsM
6

(ND3)
3

)

(1.6)

where M is a flux number and ND3 is the number of anti-D3 branes, even though the

supersymmetry breaking scale is exponentially small,

m3/2 ∼ exp

(

− 2πK

3gsM

)

(1.7)

where K is another flux number. Tadpole cancellation bounds the flux numbers by the

Euler number of the Calabi-Yau fourfold, so we can bound the lifetime by

tdecay < exp
(

10−9χ5
)

(1.8)
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Assuming that the Euler number of Calabi-Yau fourfolds is bounded, and that the bound

is of order the maximum known Euler number, we get a numerical bound

tdecay < exp
(

1022
)

(1.9)

Clearly our result is highly sensitive to the maximum Euler number.

The intuitive explanation for why the lifetime is insensitive to the supersymmetry

breaking scale is the following. Recall that KKLT break supersymmetry by adding an

anti-D3 brane at the tip of a warped throat. The supersymmetry breaking scale can

be exponentially low due to the exponential redshift in the throat. The decay of the

nonsupersymmetric de Sitter vacuum is described by an NS5 brane wrapping a 3-sphere at

the tip of the throat. In the 4-dimensional description, the wrapped NS5 brane is a domain

wall. What happens is that although the SUSY breaking scale is exponentially small, the

very same warp factor guarantees that the tension of the domain wall is also exponentially

small. We will see that these two warp factors cancel in computing the decay rate for long

throats. In other words, the decay is a process localized near the tip of the throat, and so

the rate is actually insensitive to the length of the throat for sufficiently long throats.

We are focusing on a tiny piece of the string theory landscape. We urge other authors

to try to construct extremely stable vacua using other constructions, because our results

may be highly model dependent. We present here one small piece of evidence that the

surprising bound demanded by Boltzmann Brain considerations may actually be obeyed

by the landscape of string theory.

Recent work on the lifetimes of string theory vacua includes interesting papers by

Westphal [7], by Dine and collaborators [8], and by Johnson and Larfors [9]. These authors,

however, were concerned with stability on time scales of order the Hubble time. Here we

focus in on one corner of the landscape and investigate a new time scale.

We begin, in section 2, with a discussion of Boltzmann Brains to motivate the need

for a bound on the lifetimes of de Sitter vacua. In section 3 we review the physics of false

vacuum decay, reminding the reader that at this level it is not difficult to construct false

vacua which live for about the recurrence time. section 4 presents a calculation of the decay

rate using the brane description of the instanton, while in section 5 we consider corrections

due to closed string moduli. In section 6 we point out the difficulty of constructing de

Sitter vacua using the KKLT method. In particular, we show that there is only a narrow

window where the construction is marginally under control. However, it is possible that

these difficulties can be easily fixed by minor modifications of the KKLT construction. We

conclude in section 7.

2. The Boltzmann Brain problem

String theory appears to contain a vast landscape of stable and metastable vacua. What

we normally think of as constants of nature, such as the cosmological constant and the

electron mass, vary from one vacuum to another. String theory also appears to contain

a mechanism for producing large regions of spacetime in each one of these vacua: eternal

inflation.
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In the eternally inflating multiverse, intelligent observers form in many different re-

gions. Different observers will see different cosmological constants, different electron

masses, and different CMB multipoles. In this setting, theoretical predictions for the

results of experiments are necessarily statistical [10, 11]. The probability of a given ex-

perimental outcome is proportional to the number of observations, in the multiverse, of

that outcome.

Many problems remain in making this framework precise. One is that we have not

precisely defined what constitutes an observation. Another is that the entire formulation

so far relies on the semiclassical approximation. But, even if we work in the semiclassical

approximation and take some definition of an observation, our ability to make predictions

is hindered by a familiar hobgoblin of theoretical physics: a problem of infinities.

Eternal inflation produces an infinite volume of spacetime, an infinite number of

“pocket universes” of each type, and an infinite number of observers inside each pocket

universe. Different seemingly natural prescriptions for regulating the infinities lead to

drastically different predictions. A prescription for regulating infinities and extracting pre-

dictions is referred to as a measure.

Fortunately, most simple prescriptions lead to predictions in sharp conflict with obser-

vation. One test of a measure is the “Boltzmann Brain problem” [2, 12, 3]. There are two

basic ways in which structure can form. It can form in the usual way via inflation, reheat-

ing, and gravitational collapse. Structure can also form through rare thermal fluctuations

which decrease the entropy. For example, a diffuse gas of particles can spontaneously form

a planet populated by intelligent observers. We will refer to observers produced in the

usual way as “ordinary observers,” and observers produced by rare thermal fluctuations as

“Boltzmann Brains.”

Our observations indicate that we are ordinary observers. The reason is that when

structure forms by rare thermal fluctuations, the second law of thermodynamics is violated.

The probability of a rare fluctuation is supressed by the amount of second law violation, P ∼
exp(∆S). So fluctuating a large, homogeneous universe full of structure is exponentially

rarer than fluctuating a small amount of structure. On the other hand, the number of

observers produced is only proportional to ∆S. Observers who form from rare thermal

fluctuations do not see stars in the sky. In fact, with a particular definition of what

constitutes an observer, the typical observer formed by thermal fluctuations is an isolated

brain in empty space, which just lives long enough to realize it exists — a Boltzmann

Brain. We will not need to refer to such extreme limits here and use the term “Boltzmann

Brain” to refer to any observer which forms as a result of second law violation.

2.1 Boltzmann Brains in our causal patch

To get used to this strange idea, let us first discuss Boltzmann Brains within our horizon. As

far as we know, our vacuum may have a lifetime of order the recurrence time. (In section 3

we review the arguments leading to this conclusion.) Let us assume for the moment that

our vacuum lives for approximately the recurrence time. What are the consequences?

We restrict attention to one causally connected region; the volume of this causal patch

is H−3. We want to ask the following question: within one causal patch, how many Earths
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form from rare thermal fluctuations (“Boltzmann Earths”), and how many Earths form in

the usual way (“ordinary Earths”)?

In a system at finite temperature β−1, the time to produce a fluctuation of energy E

is given by

t ≈ βeβE . (2.1)

where the prefactor is typically of order β but can depend on details such as coupling

constants. In our case, this means that the time to form a Boltzmann Earth is

tBE ≈ H−1 eH−1ME (2.2)

Plugging in the values, we find

tBE ≈ (1010 years)e1092
(2.3)

Continuing to assume that the lifetime of our vacuum is of order the recurrence time, the

number of Boltzmann Earths produced before our vacuum decays is

NBE =
tdecay

tBE

≈ H−1e10123

H−1e1092 (2.4)

Dividing, we find

NBE ≈ e10123
(2.5)

On the other hand, the number of ordinary Earths in our causal patch is roughly equal to

the number of stars inside our horizon,

NOE ≈ 1022 . (2.6)

Therefore, assuming that our vacuum lives for about the recurrence time, we find that our

causal patch contains far more Boltzmann Earths than ordinary Earths,

NBE

NOE

= e10123
(2.7)

It is easy to forget how large double-exponential numbers are, so we write the ratio as a

single exponential

NBE

NOE

= e1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

except that it will not fit on the page. The numbers involved are unimaginably large.

If our vacuum lives for about the recurrence time, the number of Earths produced by

ordinary structure formation is completely negligible compared to the number produced by

rare thermal fluctuations. Yet, as we discussed above, observation indicates that our Earth

was formed in the ordinary way. Therefore, if our vacuum lives for about the recurrence

time, we are extraordinarily atypical among civilizations in our causal patch.

Can we conclude that our vacuum must not live for the recurrence time? The answer is

that we really need a measure to answer this question. Intuitively, one might expect that it

does not matter if our causal patch is dominated by Boltzmann Brains. After all, it takes a

long time for the Boltzmann Brains to form, and in the meantime more ordinary observers

are produced elsewhere in the multiverse. The infinities must be regulated before we can

definitively say that comparing the number of Boltzmann Brains to ordinary observers in

one causal patch is a meaningful thing to do.
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2.2 Boltzmann Brains in the landscape

More generally, string theory contains a large number of de Sitter vacua. Above we fo-

cused on the production of Boltzmann Earths in our vacuum, but to compare the number

of Boltzmann Brains to the number of ordinary observers in the multiverse we need a more

general definition of what constitutes an “observer.” It seems most robust to characterize

observers by requiring them to have a certain complexity. Thus in general we will charac-

terize Boltzmann Brains as ordered systems with at least a minimum number of degrees

of freedom SBB. In other words, we say that any system with fewer than SBB degrees of

freedom is not counted as an observer; systems with greater than SBB degrees of freedom

have a chance of being observers if they also satisfy other properties which we will not

examine here. SBB is related to the entropy of the object under consideration in that it

is the logarithm of the number of states, but we are interested in constructing ordered

systems with SBB degrees of freedom, so SBB is not literally the entropy.

What is a reasonable estimate for SBB? The number of degrees of freedom in a person

is about equal to the number of particles, so roughly we can divide the mass of a person

by the mass of the proton to get

SBB ∼ 1030 . (2.8)

Perhaps we only want to count entire civilizations living on planets as observers. The earth

has about 1022 more particles than a person, so this estimate would give

SBB ∼ 1050 (2.9)

Surely no more entropy than this is required to form intelligent observers; the amount of

intelligence per particle on the earth is miniscule. On the other hand, it is quite possible

that intelligent observers can be produced with far fewer particles than in a person, so we

will summarize our ignorance by the 1σ estimate

SBB = 1035±15 (1σ) . (2.10)

Now we can estimate the number of Boltzmann Brains formed in a given vacuum. First

of all, the particle physics of the vacuum may not allow for the formation of interesting

structures, in which case the number of Boltzmann Brains is zero. If particle physics allows

for the formation of interesting structures, the cosmological constant may be too large, so

that there is not enough room to make interesting structures. Finally, if the cosmological

constant is reasonably small and the particle physics allows for interesting structures to

form, we can estimate the number of Boltzmann Brains which form.

In equilibrium, all of the entropy of de Sitter space is in the horizon. On average, one

graviton is present in the bulk. In order to make a Boltzmann Brain, we must remove

entropy from the horizon and build an ordered structure. If this structure has a size of

order the Hubble scale, then the number of degrees of freedom in the structure is about
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equal to the number of degrees of freedom removed from the horizon.1 The Boltzmann

Brain we are building is an ordered state and therefore has a small entropy compared to

the number of degrees of freedom it contains. So, in order to build a Boltzmann Brain, we

remove SBB degrees of freedom from the horizon and put them into an ordered structure.

This process decreases the entropy of the horizon by SBB; since the Boltzmann Brain has

small entropy relative to the number of degrees of freedom, the entire system decreases its

entropy by about SBB. Therefore, the time to produce a Boltzmann Brain is given by

tBB ≈ H−1eSBB . (2.11)

Note that this is actually a lower bound on the time to produce a Boltzmann Brain, because

the particle physics of the vacuum may prevent ordered structures from forming efficiently.

For example, if the mass of the particles is large then extra energy must be expended in

building a Boltzmann Brain. Therefore the above argument really gives a rough bound,

tBB > H−1eSBB . (2.12)

The expected number of Boltzmann Brains produced in a given vacuum is

NBB =
tdecay

tBB
(2.13)

The decay time is given by the exponential of the instanton action

tdecay ∼ eSinst . (2.14)

It is helpful to make explicit the double-exponential nature of tBB by defining

tBB ≡ H−1eBBB . (2.15)

Our argument above gives

BBB > SBB . (2.16)

Now the number of Boltzmann Brains is given by

NBB =
tdecay

tBB
∼ eSinst−BBB (2.17)

Recall that BBB is an exponentially large number. Generically, BBB and Sinst are not of

the same order, so the exponent is dominated by the larger of the two. Therefore, there

are two regimes. If the instanton action is smaller than BBB, the number of Boltzmann

Brains produced is double-exponentially small,

NBB ∼ e−BBB , (2.18)

1Actually, if the Boltzmann Brain is not strongly gravitating, then the number of degrees of freedom

in the Boltzmann Brain will be significantly smaller. The number of degrees of freedom removed from

the horizon is of order MH−1. If the Boltzmann Brain is of order Hubble size then this is equivalent to

the Beckenstein bound, MR & S, on the entropy of the brain. But for systems which are not strongly

gravitating, MR & S4/3 [14]. We thank Andrei Linde for bringing this to our attention. In the remainder

of this section, if one wants to restrict attention to brains which are not strongly gravitating, one can replace

SBB by S
4/3
BB .
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On the other hand, if the instanton action is larger than BBB, so that the decay time

is longer than the Boltzmann Brain time, then a double-exponentially large number of

Boltzmann Brains are produced,

NBB ∼ eSinst > eBBB (2.19)

In any given vacuum, the number of Boltzmann Brains produced is either essentially zero

or double-exponentially large.

2.3 Summary

As we mentioned above, a method of regulating infinities is necessary before we can say that

a double-exponentially large number of Boltzmann Brains in one causal patch is a problem.

We believe that a fair summary of the current situation is the following: all proposed

measures whose predictions are known and which are not already ruled out [13, 15] require

that all vacua in the landscape decay before they produce Boltzmann Brains,

tdecay < tBB . (2.20)

A detailed investigation of measures is beyond the scope of this paper. See [3, 16 – 20] for

more detailed discussion.

For the sake of having a concrete number to think about, a wide class of vacua will

be able to produce Boltzmann Brains relatively efficiently. We estimated above that in a

vacuum with reasonably cooperative particle physics tBB is simply related to the number

of degrees of freedom required for an intelligent observer,

tBB ≈ H−1eSBB . (2.21)

Basing our crude estimates for what constitutes an observer on ourselves, we found

SBB = 1035±15 (2.22)

where the uncertainty represents our lack of knowledge of the appropriate definition of the

minimal intelligent observer. Putting in some additional uncertainty to account for how

efficiently different vacua can produce Boltzmann Brains, a useful number to keep in mind,

valid for a wide class of vacua, is2

tBB ≈ H−1e1040±20
. (2.23)

Although this time is absurdly large and absurdly uncertain, it is parametrically shorter

than the recurrence time for vacua such as our own. Therefore the proposed bound is

nontrivial.

2At this level of accuracy, the factor of 4/3 discussed in the previous footnote is not important.
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3. False vacuum decay

Before focusing on our specific example, we point out that at the level of low-energy

effective field theory coupled to gravity, it is easy to build false vacua which live for about

the recurrence time. The relevant formulae for metastable vacuum decay were described

by Coleman and De Luccia (CDL) [21]. The CDL formalism computes the semi-classical

tunneling rate from a Euclidean instanton that interpolates between the true and false

vacua in four-dimensional low-energy effective field theory coupled to gravity.

The CDL tunneling probability in the thin-wall limit, where the transition region

between vacua in the instanton solution can essentially be treated as a domain wall, is a

function only of the initial vacuum energy Vi, the final energy Vf , and the tension of the

domain wall τ .

The tunneling rate per unit four-volume is proportional to e−B , where the bounce

action B = SCDL[φ] − Si is the difference between the actions of the CDL instanton and

the background, is given by [22]

B =
27π2τ4

2(δV )3
r(x, y) (3.1)

where the first factor is the quantum field theory result and

r(x, y) = 2
1 + xy −

√

1 + 2xy + x2

x2(y2 − 1)
√

1 + 2xy + x2
(3.2)

is the correction due to gravity, where3

x =
τ2

τ2
c

=
3G4τ

2

4δV
(3.3)

y =
Vi + Vf

δV
. (3.4)

The critical tension is defined as

τc =

√

4δV

3G4

, (3.5)

where δV = Vi − Vf and G4 is the four-dimensional Newton’s constant.

The radius of the domain wall is given by extremizing the Euclidean action of the

instanton; in the thin-wall limit, it is given by

ρ =
ρ0

√

1 + 2xy + x2
(3.6)

where ρ0 = 3τ/δV is the result from field theory and the denominator is a correction due

to gravity.

We will focus on the case of a metastable dS with small vacuum energy Vi = VdS & 0

decaying to a true vacuum with negative energy Vf = VAdS < 0.4 The simplest estimate

3[22] and [6] use different definitions of x and y. We follow the conventions of [6].
4When Vf < 0, the final state is not in fact eternal AdS but rather an open FRW spacetime, which

collapses in a big crunch.
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of the decay time, which is in fact an upper bound, is just the Poincare recurrence time.

As the action of the CDL instanton SCDL[φ] is negative,

B ≤ −Si =
24π2

G2
4VdS

. (3.7)

This is basically the best estimate one can give, using only the one energy scale VdS. If, as in

our universe, VdS is extremely small, the bound (3.7) on the decay rate is extremely weak.

For improving this bound, we’ll be interested in two particular limits of (3.1). The

behavior of the decay rate crosses over sharply as the tension τ crosses the critical tension

τc. When the tension is subcritical, x ≪ 1. Expanding the square root in the numerator

of (3.2) to second order in x, the gravitational correction becomes

r ≈ 1 , (3.8)

and the decay rate is given simply by the field-theory result

B ≈ 27π2τ4

2(δV )3
(3.9)

which is significantly smaller than the upper bound (3.7). Gravity is negligible because the

bubble size

ρ ∼
√

x

G4δV
∼

√
x lAdS (3.10)

is much smaller than both the radius of curvature lAdS of the false vacuum and the dS

radius ldS, since lAdS ≪ ldS for the cases of interest to us.

The lifetime increases rapidly when the tension becomes critical, x = 1, and the bubble

radius reaches a maximum at ρ =
√

3/G4VdS = ldS. For supercritical tension, x ≫ 1, the

gravitational correction (3.2) to leading order becomes

r ≈ 2

x2(y + 1)
=

16(δV )3

9G2
4τ

4Vi
. (3.11)

Plugging this in to (3.1) we find

B ≈ 24π2

G2
4VdS

(3.12)

which nearly saturates the bound (3.7), meaning the lifetime is approximately the Poincare

time. Again, the bubble radius ρ ∼ lAdS/
√

x is small, but instanton spacetime is also very

small and so the contribution to B from SCDL is negligible.

4. Decay rate of the KKLT construction

In this section, we briefly review the geometry of the flux vacua used in the KKLT construc-

tion [23, 1]. We then compute the decay rate using the brane description of the instanton.

We find that the lifetime cannot be made parametrically long and, in fact, is independent

of the SUSY breaking scale for long throats. We find that the lifetime is bounded by

exp(1022) Hubble times. The analysis in this section is simplified in that we neglect certain

corrections to the tension of the domain wall mediating the decay. However, we present this

analysis first because the formula for the corrections is not known with certainty. In the

next section, we estimate the corrections and find that they do not affect our conclusions.
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4.1 Geometry

We start in type IIB string theory with D7 branes and O3 planes compactified on a CY3, or

equivalently, an F-theory compactification on an elliptically fibered CY4. Adding F3 and

H3 fluxes generates a tree-level superpotential W0; further nonperturbative effects stabilize

the volume modulus [1].

In the presence of fluxes, the compact manifold is a conformal Calabi-Yau, so we can

write the string-frame metric

ds2 = h−1/2(y)gµν(x)dxµdxν + h1/2(y)e2uĝmn(y)dymdyn . (4.1)

Here ĝmn(y) is the fiducial Calabi-Yau metric on the manifold, which we have defined

so that ∫

d6y
√

ĝ = l6s . (4.2)

Thus the unwarped volume of the compactification is

V6 = e6ul6s (4.3)

We assume that near some point the Calabi-Yau looks like a deformed conifold with defor-

mation parameter S. The Calabi-Yau metric ĝmn in this region is approximately

dŝ2 ≈ dr2 + r2ds2
T1,1

. (4.4)

This metric is valid between a UV cutoff r0 where the fact that the CY is not simply

a conifold becomes apparent and an IR cutoff r̃ ∼ S1/3 where the deformation becomes

important. The deformed conifold has two holomorphic 3-cycles: the A-cycle, which is a

3-sphere with volume S, and the B-cycle, which is noncompact in the conifold solution.

Conifoldology [23] relates the deformation parameter to the fluxes through the cycles via5

S = r3
0e

− 2πK
gsM (4.6)

where M is the number of units of flux through the A-cycle and K is the number of units

of flux through the B-cycle:

M =
1

(2πls)2

∫

A
F3 K =

−1

(2πls)2

∫

B
H3 . (4.7)

K depends on the UV cutoff r0, but S is a parameter of the infrared physics and does not

depend on the cutoff.

Between the UV cutoff r0 and the IR cutoff r̃, the warp factor is approximately [24, 25]

h = 1 +
L4 [log(r/r̃) + 1/4]

r4
(4.8)

5Many works define the parameter z by

z = exp

„

−

2πK

gsM

«

(4.5)

This parameter is related to our parameter S by a factor of r3
0 ; this factor is often ignored.

– 11 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
6

with

L4 =
81(gsM)2l4s

8e4u
(4.9)

The exact metric in the throat is known (see, for example, [26]); what will be important

for us is that the proper volume of the minimal A-cycle is

VS3 = 2π2(bgsM)3/2l3s (4.10)

with the constant b ≈ 0.932. S gives the volume of the minimal S3 in the metric ĝmn, so

we have a useful relation between the complex structure and the geometry,

h
3/4
tip e3uS = VS3 (4.11)

where htip is the warp factor at the infrared end of the throat.

Note that the deformation parameter S is exponentially small; equation (4.11) shows

that that htip is exponentially large and they scale as [23]

S ∼ h
−3/4
tip . (4.12)

It is these exponentially small parameters which allow us to break supersymmetry by an

exponentially small amount.

4.2 SUSY breaking and decay rate

SUSY is broken by adding ND3 anti-D3 branes at the tip of the throat. The contibution

of the D3s to the action is

SD3 =
ND3

(2π)3gsl4s

∫

d4xh−1
tip . (4.13)

We work in the string frame. Due to the warp factor, from the 4d point of view, this looks

like an exponentially small additional energy density,6

δV =
2ND3

(2π)3gsl4s
h−1

tip (4.14)

The D3s at the tip of the throat are subject to decay by the KPV mechanism of

brane/flux annihilation [27, 28]. The D3s sit near one pole of the S3 at the tip of the

throat, but, due to the H5 = g−2
s ⋆10 H3 flux they polarize into an NS5 wrapping an S2

of the S3. If M < 12ND3, the NS5 is large enough to slide around the equator of the S3

to the other pole where it de-polarizes into D3s. The F3 and H3 flux carry a D3-brane

charge MK, which in this process “annihilates” with the D3s, leaving K − 1 units of H3

flux and M − ND3 D3s, conserving 3-brane charge. For M > 12ND3, the case relevant to

metastable dS, the NS5 classically sits near the original pole but can decay to the other

pole via tunneling across the equator.

6The factor of 2 in δV is explained in [27]; half the energy comes from the tension of the D3’s and the

other half from the potential energy in the F5 field induced by the fluxes.
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In the thin-wall limit, which is a good approximation for small ND3, the instanton

mediating the KPV decay is a Euclidean NS5 bubble at a fixed radius in the 4d spacetime

and wrapping the S3. The action of the NS5-brane wrapping the 3-sphere at the tip of the

throat is

SNS5 =
1

(2π)5g2
s l

6
s

VS3

∫

d3xh
−3/4
tip (4.15)

From the 4d point of view the NS5-brane is just a domain wall separating the interior true

vacuum, with no D3s and SUSY restored, from the exterior false vacuum where SUSY is

broken and the D3s are present. The tension of this domain wall is just the 4d effective

tension of the NS5-brane

τNS5 =
1

(2π)5g2
s l6s

VS3h
−3/4
tip =

b3/2M3/2

16π3g
1/2
s l3s

h
−3/4
tip . (4.16)

For now we will assume we can ignore gravitational corrections to the decay, and in the

next section we’ll check whether we can. In the field theory approximation the instanton

solution is given by just the tension of the domain wall (4.16) and the difference in vacuum

energy (4.14).

The radius of the domain wall (3.6) in the field theory approximation is

ρ =
3τ

δV
=

3b3/2M3/2g
1/2
s

4ND3

lsh
1/4
tip (4.17)

and the action (3.1) is7

BKPV = SCDL =
27π2

2

τ4

(δV )3
=

27b6

2048π

gsM
6

(ND3)
3

. (4.18)

The warp factor htip has cancelled out! Although the warped geometry allows for an

exponentially small SUSY breaking scale, the decay rate is actually independent of the

amount of warping. Note that also the volume of the compactification has cancelled out,

so that the lifetime depends only on gs and the amount of flux M .

There is an intuitive explanation for why the warp factor cancels out of the decay rate.

The entire decay process is localized near the tip of the throat; the D3s which provide the

difference in vacuum energy are localized at the tip, and NS5 brane which mediates the

decay is also localized at the tip. So the entire process is insensitive to how far away the

bulk of the Calabi-Yau is. In fact, the only reason the warp factor appeared at all is that

we are measuring quantities relative to the bulk. For processes localized at the tip, we

can write everything in terms of proper quantities which are then independent of the warp

7This matches the decay rate found by [27] in 2001, up to the famous (2π)7/4 correction to the exponent

made in version 4 from 2006 and an additional factor of 4 correction to the exponent which we have

discovered; our b is their b2
0, and our ND3 is their p.
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factor:

τproper = h3/4τ =
b3/2M3/2

16π3g
1/2
s l3s

(4.19)

δVproper = hδV =
2ND3

(2π)3gsl4s
(4.20)

ρproper = h−1/4ρ =
3b3/2M3/2g

1/2
s

4ND3

ls (4.21)

This makes it clear that the instanton action cannot depend on the warp factor, at least

in the field theory approximation.8

Now, having computed the decay rate, we can deduce a maximum lifetime. Plugging

in the value of b in equation (4.18), we find

BKPV ≈ 3 · 10−3 gsM
6

(ND3)
3

(4.23)

How big can this quantity possibly be? First, we set ND3 = 1 to make B as large as

possible. The tadpole constraint coming from the conservation of F5 flux is

MK <
χ

24
(4.24)

where χ is the Euler number of the CY4 of the F-theory compactification. In addition,

consistency of the warped compactification requires the deformation parameter S to be

exponentially small, which implies K > gsM . Combining this with the tadpole constraint,

we obtain

gsM
2 <

χ

24
(4.25)

Furthermore, requiring that the minimal S3 be bigger than the string scale gives the addi-

tional constraint

gsM > 1 , (4.26)

which when combined with (4.25) gives a maximum for M ,

M <
χ

24
. (4.27)

Thus the instanton action is bounded by

BKPV < 3 · 10−3gsM
2M4 < 4 · 10−10χ5 (4.28)

8Although we are not computing the one-loop determinant here, a similar argument would tell us that

the decay time will depend on the warp factor in such a way that the proper decay time is independent of

the warping, so we get

tdecay ∼ h
1/4
tip exp

„

27b6

2048π

gsM
6

(ND3)
3

«

. (4.22)

It is not completely clear that this argument is correct, but in any case the exponential gives the dominant

behavior in the regime of interest.
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yielding a bound on the decay time

tdecay < exp
(

4 · 10−10χ5
)

. (4.29)

Since we have not computed the one-loop determinant we do not know the dimensional

prefactor which should appear in front of the exponential. Since the decay is a field theory

process the prefactor is likely to be a microphysics length scale which is much shorter than

the Hubble length. This allows us to write

tdecay < H−1 exp
(

4 · 10−10χ5
)

. (4.30)

It is not known whether χ has a finite upper bound; the existence of a bound has neither

been proven nor disproven. Examples of elliptically fibered CY4’s with Euler number χ up

to around 106 have been found [29]. Assuming a bound near this value exists, the lifetime

is can be bounded roughly by

tdecay < H−1 exp
(

1022
)

. (4.31)

Even if no geometrical bound on χ exists, there may be physics considerations which limit

its size.

Note that since our bound on the lifetime depends exponentially on χ5, it is extremely

sensitive to the largest possible χ. It is fascinating that the largest known χ agrees so well

with the bound given by (2.20) and (2.23) coming from Boltzmann Brain considerations.

4.3 Gravitational corrections

We have just used the field theory limit to compute the decay rate. Now we must check

whether gravitational corrections are really unimportant. This is more than a technicality

because, as we reviewed in section 3, it is gravitational corrections which can make the

lifetime of order the recurrence time.

The de Sitter vacua we are considering must have very nearly zero cosmological con-

stant to have a chance of having a lifetime of order exp(1040) because the lifetime is always

bounded by the recurrence time. We achieve a small de Sitter cosmological constant by

tuning W0 to almost cancel the uplifting term from the D3s. The supersymmetric AdS

minimum, however, will not have an extraordinarily small cosmological constant, because

we want the supersymmetry breaking scale to be larger than the scale set by the de Sitter

cosmological constant, and the supersymmetry breaking scale is related to the amount of

uplifting δV .

As discussed above in section 3, gravitational corrections are negligible when x ≪ 1

which, for δV ≈ VAdS, is essentially equivalent to ρ ≪ lAdS. Plugging (4.16), (4.14), and

G4 =
G10

V6
=

(2π)7g2
s l

8
s

2e6ul6s
(4.32)

in (3.3), we find

x =
3π4b3g2

sM3

2e6uND3

h
−1/2
tip . (4.33)
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Note that here the warp factor does not cancel; warping is very effective in limiting the grav-

itational backreaction because the energy of the process is small compared to bulk scales.

Although the presence of the warp factor h
−1/2
tip means that that gravitational cor-

rections can easily be made very small, we want to know if the gravitational corrections

are big for any reasonable choice of parameters. Demanding that the total volume of the

compactification is bigger than the volume in the throat gives a bound [30]

e4u > 3π3gsMK . (4.34)

Recalling that we need K > gsM , this becomes

e4u > 3π3g2
sM

2 . (4.35)

In addition, ND3 ≥ 1, so the gravitational corrections are bounded by

x <
b3

2
√

3πgs

h
−1/2
tip ≈ 0.1g−1

s h
−1/2
tip (4.36)

Combining the inequalities (4.26) and (4.27), we find the lower bound on the string coupling

to be

gs >
24

χ
. (4.37)

Assuming, as before, that χ is bounded by its maximum known value of around 106, we

now have

x < 104h
−1/2
tip . (4.38)

This quantity can be bigger than one for acceptable, although not extremely natural,

choices of parameters, so we need to worry about gravitational corrections. Holding fixed

the parameters gs and M which control the field theory decay rate, dialing the warp

factor controls the strength of the gravitational corrections. At the microscopic level, this

corresponds to dialing the flux K through the B-cycle, which controls the length of the

throat as well as the deformation parameter S. If htip > 108, the gravitational corrections

are indeed small, and we can safely use the field theory result (4.18) and rely on the

bound (4.28). For fixed gs and M , therefore, brane/flux annihilation in long, large-K

throats occur at field-theory rates.

On the other hand, if htip is too small, gravitational corrections are large. As discussed

in section 3, when x > 1 the tension is supercritical and the decay rate nearly saturates

the recurrence bound (3.7):

BKPV ≈ 24π2

G2
4VdS

! (4.39)

For short, small-K throats, brane/flux annihilation therefore occurs extremely slowly. How-

ever, in the regime where the gravitational corrections are important, supersymmetry is

also badly broken. We will see in the next section that other decay modes will become

important in this regime.
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4.4 Destabilization of bulk fluxes

Having computed the decay rate via brane/flux annihilation, we consider whether it is really

the dominant decay mode. Without a completely detailed description of the vacuum, it is

impossible to be sure the fastest decay has truly been identified. However, all flux vacua

have a very generic decay mode whose rate can be estimated.

Recall that in the bulk we have wrapped fluxes on a variety of cycles. Before su-

persymmetry is broken, there are BPS domain walls, branes wrapped on cycles which can

interpolate between vacua with different flux configurations. And, of course, with unbroken

supersymmetry there are no instabilities.

However, if supersymmetry is broken by a small amount by uplifting to a dS vacuum,

some of these now near-BPS domain walls become the bubble walls of instantons mediating

genuine instabilities. Ceresole, Dall’Agata, Giryavets, Kallosh, and Linde [6] estimated the

decay rate in precisely these circumstances. To first order in the size of the SUSY breaking,

the bubble size and decay rate depend only on the change in vacuum energies and not on

the change in tension. Therefore, the bubble tension can be approximated by the tension

of the associated BPS domain wall. For a supersymmetric AdS, with vacuum energy VAdS,

uplifted to slightly positive cosmological constant, VdS ≪ |VAdS|, the bounce action is

approximately

BCDGKL =
6π2

G2
4|VAdS|

(4.40)

where |VAdS| is also approximately the size of SUSY breaking.

We will first consider the case when x < 1 and gravitational corrections are unimpor-

tant. To compare the rate (4.40) to the decay rate by brane/flux annihilation (4.18), it is

helpful to multiply and divide by the radius ρ0 of the critical bubble for the KPV decay in

the field theory approximation,

ρ0 ∼ τ

δV
, (4.41)

to get

BCDGKL ∼ ℓ4
AdS

ρ4
0

(VAdSρ
4
0) ∼

ℓ4
AdS

ρ4
0

B0
KPV . (4.42)

where B0
KPV is the action for the brane/flux annihilation in the field theory approximation.

Recall that the quantity
ρ4
0

ℓ4AdS
∼ x2 controls the gravitational corrections. So we can write

BCDGKL ∼ B0
KPV

x2
(4.43)

For x < 1, BCDGKL > B0
KPV, so the destabilization of bulk fluxes is slower than the

brane/flux annihilation, and since gravity is unimportant the instanton action is well ap-

proximated by the field theory result B0
KPV.

On the other hand, when x > 1 and gravity is important, the brane/flux annihilation

rate instead approaches the recurrence rate (4.39). However, in this regime BCDGKL <

B0
KPV, so the destabilization of bulk fluxes is the most important process and the decay is

even faster than the field theory approximation to the KPV decay.

– 17 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
6

Thus we can summarize the instanton action by

B = B0
KPV x < 1 (4.44)

B ∼ B0
KPV

x2
x > 1 (4.45)

Therefore up to possible order one factors in the exponent, the decay rate is bounded by

tdecay < exp
(

B0
KPV

)

(4.46)

so our simple analysis from the previous section gives the correct bound.

While the estimate of [6] is the best estimate for the decay rate of nearly supersym-

metric vacua of which we are aware, there may well be constructions which are longer

lived than this estimate. In particular, [6] assumes that before supersymmetry breaking

some of the BPS domain walls have exactly the critical tension, so that the decay is just

marginally forbidden. This assumption is not always correct for BPS domain walls, as

mentioned by [6]. A construction which is more stable under supersymmetry breaking

than the estimate of [6] could well provide a counterexample to our proposed bound.

4.5 Summary

To summarize, we have bounded the decay rate of the metastable KKLT vacuum. In the

regime of long throats, the dominant decay is by brane/flux annihilation and warping has

no effect on the decay rate. For short throats, the decay is instead by decay of bulk fluxes

whose rate is given by (4.40). The lifetime, which depends simply on the flux M wrapped

on the S3 at the tip of the throat and the string coupling gs, is

tdecay ∼ e3·10−3gsM6
. (4.47)

A computation of the one-loop determinant would be necessary to determine the dimen-

sional factor multiplying the exponential.

Putting in the tadpole constraint, demanding that the supergravity approximation is

at least marginally valid, and arguing that the dimensional prefactor is small compared to

the Hubble scale H−1, we get a bound

tdecay < H−1e4·10−10χ5
< H−1e1022

. (4.48)

Our bound appears to depend sensitively on details, and we urge other authors to try to

violate the bound in different constructions. Our bound depends sensitively on the largest

possible χ, which is not known. Additionally, it relies heavily on the formula (4.40) to

estimate certain decays, and the formula may not be generally true. Finally, our estimates

are valid for supersymmetry breaking by anti-D3 branes; the lifetime could be much longer

for other types of supersymmetry breaking. Nevertheless, even within our simplified context

the fact the the lifetime satisfies the bound is nontrivial and surprising.
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5. Corrections to the tension

In the previous section, we approximated the tension of the domain wall by the tension of

the wrapped NS5 brane. In fact, there are other contributions to the tension of the domain

wall; these contributions could have the effect of increasing the lifetime. For example, the

parameter S which controls the deformation of the conifold changes in the transition;

taking this into account increases the bounce action. In fact, the additional action due to

the change in S appears to be the dominant correction.

This correction was first computed by Frey, Lippert, and Williams [28]. Here we will

review that computation, updating it to reflect an improved understanding of the Kahler

potential and correcting some minor errors which arose due to conflicting conventions in the

literature. However, these results remain uncertain because computing the correct Kahler

potential in warped compactifications remains an open problem; see [31 – 34].

The contribution to the action from the closed string moduli is naturally computed

from the 4D superpotential in the 4D Einstein frame. Therefore, in contrast to the section 4

where we worked in string frame, in this section we work in the 4D Einstein frame.

To compute the full tension, including the effect of the closed string moduli, we use

the an approximation similar to that of [6] as described in section 4.4. We have been

interested in describing the brane/flux annihilation which leads to the decay of the D3s.

We can compute the tension by relating the domain wall we are interested in to a BPS

domain wall. Even in the absence of D3s, one can consider a wrapped NS5 brane domain

wall. On one side of the domain wall we have fluxes K and M , and on the other side we

have fluxes K − 1 and M along with M explicit D3 branes. This is essentially the same

domain wall which changes the flux through the B-cycle by one unit, but now both sides

are supersymmetric and we can compute the tension using the BPS formula

τE =
∣

∣

∣
∆
(

eK/2W
)
∣

∣

∣
(5.1)

where the notation τE indicates that this is the tension computed in the 4D Einstein frame.

It is unclear to us whether our calculation is exact for BPS domain walls or not, due to

the complications associated with Kahler moduli in warped compactifications.

This supersymmetric domain wall does not constitute an instability. If we now add a

small number of D3s, we expect that the tension computed from the BPS formula will not

change much, but now the domain wall interpolates between a nonsupersymmetric false

vacuum and a supersymmetric true vacuum, and the corresponding instanton describes a

real instability. In the following we compute the tension in the supersymmetric case.

The superpotential is

W = Wflux + Wnp (5.2)
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We choose the following set of conventions

Wflux =
1

(2π)7l8s

∫

G ∧ Ω (5.3)

∫

Ω ∧ Ω̄ = l6s (5.4)

eK/2 =
g2
s l

6
s

Vw
(5.5)

where G = F − τH with τ = i/gs, Vw is the warped volume of the compactification, and

Ω is the holomorphic three-form.

The flux superpotential can be evaluated by using the formula

∫

G ∧ Ω =
∑

i

(
∫ i

A
G

∫ i

B
Ω −

∫ i

B
G

∫ i

A
Ω

)

(5.6)

where the sum is over all symplectic pairs of three-cycles. For the conifold throat we have

∫

A
G = (2πls)

2M

∫

B
G =

i(2πls)
2

gs
K (5.7)

∫

A
Ω = S

∫

B
Ω =

1

2πi
S

(

log
S

r3
0

− 1

)

(5.8)

Plugging these in, we get a formula for the contribution of the throat to the superpotential,

Wthroat = − i

(2π)5l6s

[

K

gs
S +

M

2π
S

(

log
S

r3
0

− 1

)]

(5.9)

Evaluating this at the supersymmetric minimum DSW ≈ ∂SWthroat = 0, we get9

Wthroatvac =
i

(2π)6l6s
MS . (5.10)

Assuming that the change in the superpotential and Kahler potential is small and that gs

does not change much in the transition, the tension is

τE ≈ g2
s l

6
s

∣

∣

∣

∣

∆W

Vw
− ∆Vw

V 2
w

W

∣

∣

∣

∣

(5.11)

As pointed out by, for example, [32, 34], although in these conventions the unwarped volume

is independent of the complex structure moduli, the warped volume is not.

Across the domain wall, K decreases by one unit while M stays fixed. The change in

superpotential is therefore

∆W =
i

(2π)6l6s
M∆S (5.12)

9In [28] it is claimed that Wthroatvac = 0 because the K and M fluxes are (2, 1) forms. Our explicit

calculation here gives a nonzero answer, which does not depend on UV physics, and is equal to what one

would get from the field theory analysis, so we believe this answer is correct. The conflict is resolved as

follows. In the noncompact conifold the fluxes are (2, 1) forms, but because the manifold is noncompact this

is not sufficient to conclude that Wthroatvac = 0. Once the conifold is embedded in a compact Calabi-Yau,

it is no longer clear that the fluxes are (2, 1) forms.
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Recall that S = r3
0 exp[−2πK/(gsM)], so

∆S =
2π

gsM
S (5.13)

assuming that 2π/(gsM) ≪ 1, as it should be in the supergravity approximation. Then

∆W =
i

(2π)5l6sgs
S . (5.14)

Computing the change in the warped volume across the domain wall is subtle, because

on the side with K − 1 units of flux through the B-cycle there are M explicit D3 branes.

If one ignores the backreaction of the D3 branes on the metric, then one finds that the

change in the warped volume has a strange UV dependence. One can do the calculation

correctly by finding the full metric with the D3 branes included, but the answer can instead

be estimated by the following intuitive argument. Across the domain wall, one step in the

Klebanov-Strassler cascade has been eliminated. The change in warped volume is just the

warped volume of the eliminated region. So, we just need the warped volume of the last

step of the Klebanov-Strassler cascade.

Since this argument will not get order one factors right, we will not keep them here.

The proper AdS radius in the IR is ℓIR = euL ∼ (gsM)1/2ls. We can compute the warped

volume of this step:

∆Vw ∼
∫ r̃K−1

r̃K

ℓ6
IR

dr

r
h
−1/2
tip (5.15)

The first part is the proper volume, and to get the warped volume we multiply by the

factor h
−1/2
tip . The relationship between the IR cutoffs r̃K and r̃K−1 is

r̃K−1

r̃K
=

(

SK−1

SK

)1/3

= e
2π

3gsM (5.16)

Performing the integral, we get

∆Vw ∼ ℓ6
IRh

−1/2
tip

1

gsM
∼ (gsM)2h

−1/2
tip l6s . (5.17)

One can perform this analysis in the full warped deformed conifold metric and get the same

result.

Gathering together the above formulas we get

τE = g2
s l

6
s

∣

∣

∣

∣

1

(2π)5l6s

S

gsVw
+ c

(gsM)2l6s
V 2

w

h
−1/2
tip W

∣

∣

∣

∣

(5.18)

where c is an unknown order one constant.

We would like to compare this formula to the tension we computed from the probe NS5

brane computation. To translate, we must relate S to the geometrical factors appearing in

the NS5 computation. From (4.11), the parameter S is the size of the S3 at the tip of the

conifold with the Kahler modulus and the warp factor factored out. To get the physical

volume we put these back in:

S = h
−3/4
tip e−3uVS3. (5.19)
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Using the approximation that the warped volume of the compactification is about the same

as the unwarped volume, e6ul6s ≈ Vw, and rearranging some factors, we get

τE =
g3
s l

9
s

V
3/2
w

∣

∣

∣

∣

∣

1

(2π)5g2
s l

6
s

VS3h
−3/4
tip + c

gsM
2l3s

V
1/2
w

Wh
−1/2
tip

∣

∣

∣

∣

∣

(5.20)

This is the tension computed in the Einstein frame. The prefactor is precisely the conversion

from string frame to Einstein frame, so we drop this in comparing to our formula from the

probe NS5 computation. The first term inside the absolute value is precisely the wrapped

NS5 brane tension, equation (4.16). The second term can be thought of as the contribution

to the action due to changing the closed string moduli. It is suppressed by additional powers

of the volume and factors of gs. However, the warp factor at the tip htip is exponentially

large, and the second term is suppressed by fewer powers of htip. Therefore it, and not the

tension of the wrapped NS5 brane, could be the dominant contribution for a wide range

of parameters.

For us, however, this term will not be important. The reason is that we are interested

in a situation where the nonsupersymmetric vacuum has nearly zero cosmological constant.

This requires VAdS + δV ≈ 0 which implies

W ∼ h
−1/2
tip . (5.21)

Thus for uplifting to nearly flat space the correction term in the tension becomes

∆τ ∼ h−1
tip (5.22)

which is now smaller, in terms of powers of htip, than the first term; with some more work

one can see that in fact the correction is always negligible. Therefore, we are justified in

using the tension calculated from the probe NS5 brane calculation.

We have assumed in the above that the string coupling gs and the volume modulus

σ do not change significantly across the domain wall. One can compute the additional

contribution to the action from these terms and find that it is not important in the regime

of interest.

6. Delicacy of the KKLT construction

Upon investigating the parameter space of controllable KKLT dS vacua, we discover that in

fact stabilizing the volume with nonperturbative corrections to the superpotential and then

breaking supersymmetry with D3s is not easy to control. The basic tension is that large flux

numbers in the throat are desirable so that supergravity is valid and the nonsupersymmetric

vacuum is metastable. On the other hand, large flux numbers in the throat make the

volume of the compactification large. However, the nonperturbative corrections to the

superpotential are exponentially small at large volume. It is challenging to find parameters

for which the volume is large enough to allow metastable nonsupersymmetric vacua but

small enough so that the nonperturbative volume stabilization mechanism can work.
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The compact volume has to be large enough so that the throat fits. In terms of the

imaginary part of the universal Kahler modulus, equation (4.34) can be restated as [30]

σ > 3π3MK (6.1)

where the σ = g−1
s V

2/3
w .

More generally, we need some room for other cycles wrapped with fluxes so that we

can tune W0, so the requirement is actually

σ = 3π3MK

(

V6

Vthroat

)2/3

. (6.2)

where V6 is the volume of the compact manifold and Vthroat is the volume of the throat

region. Warping is not significant in this formula because both the warped volume and the

unwarped volume of the throat are dominated by the region near the bulk where the warp

factor approaches one.

The warped solution requires K > gsM , and in order that the D3s are perturbatively

stable against brane/flux annihilation, we need [27]

M > 12ND3 . (6.3)

Also, the radius of the minimal S3 is given by
√

bgsM , so for the supergravity solution to

be reliable we need gsM ≫ 1.

To make use of these inequalities, we rewrite the formula for the volume modulus as

σ = 36π3ND3

(

M

12ND3

)

(gsM)

(

K

gsM

)(

V6

Vthroat

)2/3

(6.4)

The volume modulus is roughly 103 times a number of factors, each of which must be

larger than one by the arguments above. One would have been tempted to make each one

of these factors large in order to obtain control.

Such a large volume may be difficult to obtain in the KKLT construction because

nonperturbative effects must be important. More quantitatively, the superpotential is

W = W0 + Ae−aσ (6.5)

and the Kahler potential is

K = −3 log σ + . . . (6.6)

so solving DσW = 0 for the supersymmetric vacuum we get

W0 = −aAσ

3
e−aσ (6.7)

We want to know how large σ can be subject to solving this equation. The smallest

|W0|/σ3/2 is about 1/
√

Nvac, or perhaps 10−2000 [35]. This gives roughly

aσ − log A < 5000 (6.8)
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If the nonperturbative effects come from gaugino condensation on D7 branes, then a =

2π/ND7. As far as we know, an extremely large number of D7 branes is not possible, so

we assume that a > 0.1. Then, if the prefactor A does not take an extreme value, we have

σ < 105 . (6.9)

which leaves an extremely narrow window where the construction can work,

103 ND3

(

M

12ND3

)

(gsM)

(

K

gsM

)(

V6

Vthroat

)2/3

< σ < 105 (6.10)

Recall that each of the factors on the left side of the equation must be larger than one. In

the words of S. Kachru, constructions in this narrow window “are not deep in the regime

of calculability.” [36]

There may be ways to arrange for σ to take a larger volume than our estimate of 105.

As pointed out by Denef et al. [37], the prefactor A may be quite large,

A ∼ e
2πχ(D)
24gs (6.11)

where χ(D) is the Euler number of the divisor D on which the D7s are wrapped. Also,

one can impose a discrete R-symmetry so that W0 is zero at tree level [38, 39]; this would

allow for a much smaller minimum value of W0. This latter possibility has recently been

explored in more detail [40], and has the advantage that all of the analysis in this paper

remains valid in computing the decay rates.

Of course, the large volume scenario of [41] allows for much larger volumes, but in this

case supersymmetry is already broken when the moduli are stabilized, so we would have

to do an entirely different estimate of the decay rates.

Finally, one could perhaps avoid the need for such large volumes by breaking supersym-

metry in a milder way than by adding antibranes. Note that it is only the combination of

volume stabilization by nonperturbative effects and supersymmetry breaking by antibranes

which squeezes us into the narrow window (6.10).

7. Conclusions and future directions

We have investigated a new bound stating that all de Sitter vacua should decay before

they produce Boltzmann Brains. This time scale is much longer than the Hubble time

but much shorter than the recurrence time for vacua with small cosmological constant

such as our own. We have found surprisingly strong support for the bound in a sector

of the landscape, the KKLT vacua, in which one might have thought it would be easy to

construct very long-lived vacua. Incidentally, we have pointed out that the classic KKLT

construction is quite difficult to control. However, we expect that minor modifications

can lead to much more controlled de Sitter vacua. Our analysis has narrowly focused on

the specific example of KKLT vacua, but we suspect that this type of bound may be an

example of a phenomenon generic to stringy dS vacua. It would be of great interest to
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see whether other constructions of de Sitter space obey the same bound, since our results

appear to be highly model-dependent.

The basic reason that all de Sitter vacua might decay before they make Boltzmann

Brains is that stabilizing moduli and tuning the vacuum energy to be small requires a

rich set of ingredients. Since the vacuum energy is accidentally small, the ingredients in

the construction will naturally have decay rates which are unrelated to the scale of the

vacuum energy. Also, we have seen that nearly supersymmetric vacua are not necessarily

extremely stable. In the case of the KKLT vacua, we have found the decay rate is actually

independent of the supersymmetry breaking scale.

On the other hand, it is quite possible that by considering a slightly different construc-

tion, other authors will be able to construct extremely long-lived vacua. In this case, the

currently viable measures would be ruled out, and we would have valuable new information

about the correct way to regulate the infinities of eternal inflation. Finally, it would be

very interesting to find a model-independent argument which bounds the lifetimes of de

Sitter vacua without invoking Boltzmann Brains.

Acknowledgments

We particularly thank Raphael Bousso for collaboration in the early stages of this project

and Shamit Kachru for discussions and technical assistance. We have also enjoyed helpful

discussions with Chris Beem, Steve Giddings, Maximilian Kreuzer, Andrei Linde, Liam

McAllister, Yu Nakayama, Stephen Shenker, Eva Silverstein, and Leonard Susskind. This

work was supported by Israel Science Foundation grant 568/05, the Berkeley Center for

Theoretical Physics, and by DOE grant DE-AC0376SF00098.

References

[1] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [hep-th/0301240].

[2] L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant,

JHEP 10 (2002) 011 [hep-th/0208013].

[3] R. Bousso and B. Freivogel, A paradox in the global description of the multiverse, JHEP 06

(2007) 018 [hep-th/0610132].

[4] A. Aguirre, T. Banks and M. Johnson, Regulating eternal inflation. II: the great divide,

JHEP 08 (2006) 065 [hep-th/0603107].

[5] R. Bousso, B. Freivogel and M. Lippert, Probabilities in the landscape: the decay of nearly

flat space, Phys. Rev. D 74 (2006) 046008 [hep-th/0603105].

[6] A. Ceresole, G. Dall’Agata, A. Giryavets, R. Kallosh and A. Linde, Domain walls, near-BPS

bubbles and probabilities in the landscape, Phys. Rev. D 74 (2006) 086010 [hep-th/0605266].

[7] A. Westphal, Lifetime of stringy de Sitter vacua, JHEP 01 (2008) 012 [arXiv:0705.1557].

[8] M. Dine, G. Festuccia, A. Morisse and K. van den Broek, Metastable domains of the

landscape, JHEP 06 (2008) 014 [arXiv:0712.1397].

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://arxiv.org/abs/hep-th/0301240
http://jhep.sissa.it/stdsearch?paper=10%282002%29011
http://arxiv.org/abs/hep-th/0208013
http://jhep.sissa.it/stdsearch?paper=06%282007%29018
http://jhep.sissa.it/stdsearch?paper=06%282007%29018
http://arxiv.org/abs/hep-th/0610132
http://jhep.sissa.it/stdsearch?paper=08%282006%29065
http://arxiv.org/abs/hep-th/0603107
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C046008
http://arxiv.org/abs/hep-th/0603105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C086010
http://arxiv.org/abs/hep-th/0605266
http://jhep.sissa.it/stdsearch?paper=01%282008%29012
http://arxiv.org/abs/0705.1557
http://jhep.sissa.it/stdsearch?paper=06%282008%29014
http://arxiv.org/abs/0712.1397


J
H
E
P
1
2
(
2
0
0
8
)
0
9
6

[9] M.C. Johnson and M. Larfors, Field dynamics and tunneling in a flux landscape, Phys. Rev.

D 78 (2008) 083534 [arXiv:0805.3705].

[10] R. Bousso and J. Polchinski, Quantization of four-form fluxes and dynamical neutralization

of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134].

[11] L. Susskind, The anthropic landscape of string theory, hep-th/0302219.

[12] D.N. Page, Is our universe decaying at an astronomical rate?, Phys. Lett. B 669 (2008) 197

[hep-th/0612137].

[13] R. Bousso, Holographic probabilities in eternal inflation, Phys. Rev. Lett. 97 (2006) 191302

[hep-th/0605263].

[14] R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101].

[15] A. De Simone, A.H. Guth, M.P. Salem and A. Vilenkin, Predicting the cosmological constant

with the scale-factor cutoff measure, arXiv:0805.2173.

[16] A. Linde, Sinks in the landscape, Boltzmann brains and the cosmological constant problem,

JCAP 01 (2007) 022 [hep-th/0611043].

[17] A. Linde, Towards a gauge invariant volume-weighted probability measure for eternal

inflation, JCAP 06 (2007) 017 [arXiv:0705.1160].

[18] R. Bousso, B. Freivogel and I.-S. Yang, Boltzmann babies in the proper time measure, Phys.

Rev. D 77 (2008) 103514 [arXiv:0712.3324].

[19] A. De Simone, A. Guth, A. Linde, M. Noorbala, M. Salem and A. Vilenkin, in preparation.

[20] R. Bousso, B. Freivogel and I. Yang, in preparation.

[21] S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D

21 (1980) 3305.

[22] S.J. Parke, Gravity, the decay of the false vacuum and the new inflationary universe scenario,

Phys. Lett. B 121 (1983) 313.

[23] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097].

[24] I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N) × SU(N + M)

gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159].

[25] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB-resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191].

[26] C.P. Herzog, I.R. Klebanov and P. Ouyang, Remarks on the warped deformed conifold,

hep-th/0108101.

[27] S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a

non-supersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197].

[28] A.R. Frey, M. Lippert and B. Williams, The fall of stringy de Sitter, Phys. Rev. D 68 (2003)

046008 [hep-th/0305018].

[29] M. Lynker, R. Schimmrigk and A. Wisskirchen, Landau-Ginzburg vacua of string, M- and

F-theory at c = 12, Nucl. Phys. B 550 (1999) 123 [hep-th/9812195].

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C083534
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C083534
http://arxiv.org/abs/0805.3705
http://jhep.sissa.it/stdsearch?paper=06%282000%29006
http://arxiv.org/abs/hep-th/0004134
http://arxiv.org/abs/hep-th/0302219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB669%2C197
http://arxiv.org/abs/hep-th/0612137
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C191302
http://arxiv.org/abs/hep-th/0605263
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C74%2C825
http://arxiv.org/abs/hep-th/0203101
http://arxiv.org/abs/0805.2173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0701%2C022
http://arxiv.org/abs/hep-th/0611043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA%2C0706%2C017
http://arxiv.org/abs/0705.1160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C103514
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C103514
http://arxiv.org/abs/0712.3324
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD21%2C3305
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD21%2C3305
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB121%2C313
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C106006
http://arxiv.org/abs/hep-th/0105097
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB578%2C123
http://arxiv.org/abs/hep-th/0002159
http://jhep.sissa.it/stdsearch?paper=08%282000%29052
http://arxiv.org/abs/hep-th/0007191
http://arxiv.org/abs/hep-th/0108101
http://jhep.sissa.it/stdsearch?paper=06%282002%29021
http://arxiv.org/abs/hep-th/0112197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046008
http://arxiv.org/abs/hep-th/0305018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB550%2C123
http://arxiv.org/abs/hep-th/9812195


J
H
E
P
1
2
(
2
0
0
8
)
0
9
6

[30] O. DeWolfe, S. Kachru and H.L. Verlinde, The giant inflaton, JHEP 05 (2004) 017

[hep-th/0403123].

[31] S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the

warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158].

[32] M.R. Douglas, J. Shelton and G. Torroba, Warping and supersymmetry breaking,

arXiv:0704.4001.

[33] M.R. Douglas and G. Torroba, Kinetic terms in warped compactifications, arXiv:0805.3700.

[34] G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of warped flux

compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068].

[35] F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194.

[36] S. Kachru, private communication.

[37] F. Denef, M.R. Douglas, B. Florea, A. Grassi and S. Kachru, Fixing all moduli in a simple

F-theory compactification, Adv. Theor. Math. Phys. 9 (2005) 861 [hep-th/0503124].

[38] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102].

[39] K. Choi and K.S. Jeong, String theoretic QCD axion with stabilized saxion and the pattern of

supersymmetry breaking, JHEP 01 (2007) 103 [hep-th/0611279].

[40] R. Blumenhagen, S. Moster and E. Plauschinn, String GUT scenarios with stabilised moduli,

arXiv:0806.2667.

[41] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058].

– 27 –

http://jhep.sissa.it/stdsearch?paper=05%282004%29017
http://arxiv.org/abs/hep-th/0403123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C126003
http://arxiv.org/abs/hep-th/0507158
http://arxiv.org/abs/0704.4001
http://xxx.lanl.gov/abs/0805.3700
http://jhep.sissa.it/stdsearch?paper=06%282008%29024
http://arxiv.org/abs/0803.3068
http://arxiv.org/abs/0803.1194
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C9%2C861
http://arxiv.org/abs/hep-th/0503124
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C79%2C733
http://arxiv.org/abs/hep-th/0610102
http://jhep.sissa.it/stdsearch?paper=01%282007%29103
http://arxiv.org/abs/hep-th/0611279
http://arxiv.org/abs/0806.2667
http://jhep.sissa.it/stdsearch?paper=03%282005%29007
http://arxiv.org/abs/hep-th/0502058

